
1. What is Angular?

Angular is a framework to build large scale and high-performance web application
while keeping them as easy-to-maintain. Following are the features of Angular
framework.

● Components ​− The earlier version of Angular had a focus of Controllers but
now has changed the focus to having components over controllers.
Components help to build the applications into many modules. This helps in
better maintaining the application over a period of time.

● TypeScript​ − The newer version of Angular is based on TypeScript. This is a
superset of JavaScript and is maintained by Microsoft.

● Services​ − Services are a set of code that can be shared by different
components of an application. So for example, if you had a data component
that picked data from a database, you could have it as a shared service that
could be used across multiple applications.

2. What are the key components of Angular?

Angular 2 and earlier versions have the following components −

● Modules ​− This is used to break up the application into logical pieces of code.
Each piece of code or module is designed to perform a single task.

● Templates​ − This is used to define the views of an Angular application.
● Directive - ​it can be used to extend HTML with new attributes
● Pipe​ - it helps transform values in Angular template
● Service​ − This is used to create components which can be shared across the

entire application.

3. Explain Modules in Angular

Modules are used in Angular to put logical boundaries in your application. Hence,
instead of coding everything into one application, you can instead build everything
into separate modules to separate the functionality of your application. A module is
made up of the following parts −

● Bootstrap array ​− This is used to tell Angular which components need to be
loaded so that its functionality can be accessed in the application. Once you
include the component in the bootstrap array, you need to declare them so
that they can be used across other components in the Angular application.

● Export array​ − This is used to export components, directives, and pipes
which can then be used in other modules.

● Import array​ − Just like the export array, the import array can be used to
import the functionality from other Angular modules.

4. Explain Components in Angular

Each application consists of Components. Each component is a logical boundary of
functionality for the application. You need to have layered services, which are used
to share the functionality across components. Following is the anatomy of a
Component. A component consists of −

● Class ​− This is like a C or Java class which consists of properties and
methods.

● Metadata​ − This is used to decorate the class and extend the functionality of
the class.

● Template​ − This is used to define the HTML view which is displayed in the
application.

5. What are Angular directives? Explain with examples

A directive is a custom HTML element that is used to extend the power of HTML.
Angular 2 has the following directives that get called as part of the BrowserModule
module.

● ngIf ​−
● The ​ngif element ​is used to add elements to the HTML code if it evaluates to

true, else it will not add the elements to the HTML code.
● Syntax
● *ngIf = 'expression'

● If the expression evaluates to true then the corresponding gets added, else

the elements are not added.
● ngFor​ −
● The ​ngFor element​ is used to elements based on the condition of the For

loop.
● Syntax
● *ngFor = 'let variable of variablelist'

● The variable is a temporary variable to display the values in the ​variablelist​.

6. How will you handle HTTP errors in Angular applications?

You can work with HTTP errors if you attach a “​catch”​ to your request. For example:

import { Injectable } from '@angular/core';
import { Observable } from 'rxjs/Observable';
import { HttpClient } from '@angular/common/http';

import 'rxjs/add/observable/throw';

@Injectable()
export class Client {

 constructor(
 public http: HttpClient
) {}

 public fetch() {
 return this.http.post('https://thisurliswrong123123.com', {})
 .catch((err) => {

 // Do messaging and error handling here

 return Observable.throw(err)
 });
 }
}

You should use HTTP Interceptor to route all request properly. And you can
automatically add or remove properties to each request.

7. What is routing?

Routing helps in directing users to different pages based on the option they choose
on the main page. Hence, based on the option they choose, the required Angular
Component will be rendered to the user.

8. What is CLI?

Command Line Interface ​(CLI) can be used to create our Angular application. It
also helps in creating a unit and end-to-end tests for the application.

9. What is Dependency Injection?

Dependency injection is an app design pattern. Angular provides a developer with its
own DI framework and it is used to increase the efficiency of Angular apps.
Dependencies are services or objects that a class needs to perform its function. DI is
a coding pattern in which a class asks for dependencies from external sources rather
than creating them itself (​Angular.io​).

https://angular.io/guide/dependency-injection

10. Explain tsconfig.json file.

This file is used to give the options about TypeScript used for the Angular project.

{

 ​"compilerOptions"​:​ ​{

 ​"target"​:​ ​"es5"​,

 ​"module"​:​ ​"commonjs"​,

 ​"moduleResolution"​:​ ​"node"​,

 ​"sourceMap"​:​ ​true​,

 ​"emitDecoratorMetadata"​:​ ​true​,

 ​"experimentalDecorators"​:​ ​true​,

 ​"lib"​:​ ​[​ ​"es2015"​,​ ​"dom"​ ​],

 ​"noImplicitAny"​:​ ​true​,

 ​"suppressImplicitAnyIndexErrors"​:​ ​true

 ​}

}

Following are some key points to note about the above code.

● The target for the compilation is ​es5 and that is because most browsers can
only understand ​ES5 typescript​.

● The ​sourceMap option is used to generate Map files, which are useful when
debugging. Hence, during development, it is good to keep this option as true.

● The "​emitDecoratorMetadata​": true and "experimentalDecorators": true is
required for Angular decorators. If not in place, Angular application will not
compile.

11. Explain package.json file.

This file contains information about Angular 2 project. Following are the typical
settings in the file.

{

 ​"name"​:​ ​"angular-quickstart"​,

 ​"version"​:​ ​"1.0.0"​,

 ​"description"​:​ ​"QuickStart package.json from the documentation,

 supplemented with testing support"​,

 ​"scripts"​:​ ​{

 ​"build"​:​ ​"tsc -p src/"​,

 ​"build:watch"​:​ ​"tsc -p src/ -w"​,

 ​"build:e2e"​:​ ​"tsc -p e2e/"​,

 ​"serve"​:​ ​"lite-server -c=bs-config.json"​,

 ​"serve:e2e"​:​ ​"lite-server -c=bs-config.e2e.json"​,

 ​"prestart"​:​ ​"npm run build"​,

 ​"start"​:​ ​"concurrently \"npm run build:watch\" \"npm run serve\""​,

 ​"pree2e"​:​ ​"npm run build:e2e"​,

 ​"e2e"​:​ ​"concurrently \"npm run serve:e2e\" \"npm run protractor\"

--killothers --success first"​,

 ​"preprotractor"​:​ ​"webdriver-manager update"​,

 ​"protractor"​:​ ​"protractor protractor.config.js"​,

 ​"pretest"​:​ ​"npm run build"​,

 ​"test"​:​ ​"concurrently \"npm run build:watch\" \"karma start

karma.conf.js\""​,

 ​"pretest:once"​:​ ​"npm run build"​,

 ​"test:once"​:​ ​"karma start karma.conf.js --single-run"​,

 ​"lint"​:​ ​"tslint ./src/**/*.ts -t verbose"

 ​},

 ​"keywords"​:​ ​[],

 ​"author"​:​ ​""​,

 ​"license"​:​ ​"MIT"​,

 ​"dependencies"​:​ ​{

 ​"@angular/common"​:​ ​"<2.4.0"​,

 ​"@angular/compiler"​:​ ​"<2.4.0"​,

 ​"@angular/core"​:​ ​"<2.4.0"​,

 ​"@angular/forms"​:​ ​"<2.4.0"​,

 ​"@angular/http"​:​ ​"<2.4.0"​,

 ​"@angular/platform-browser"​:​ ​"<2.4.0"​,

 ​"@angular/platform-browser-dynamic"​:​ ​"<2.4.0"​,

 ​"@angular/router"​:​ ​"<3.4.0"​,

 ​"angular-in-memory-web-api"​:​ ​<​0.2​.​4​",

 "​systemjs​": "​0.19​.​40​",

 "​core​-​js​": "​̂​2.4​.​1​",

 "​rxjs​": "​5.0​.​1​",

 "​zone​.​js​": "​̂​0.7​.​4​"

 },

 "​devDependencies​": {

 "​concurrently​": "​̂​3.2​.​0​",

 "​lite​-​server​": "​̂​2.2​.​2​",

 "​typescript​": "​<​2.0​.​10​",

 "​canonical​-​path​": "​0.0​.​2​",

 "​tslint​": "​̂​3.15​.​1​",

 "​lodash​": "​̂​4.16​.​4​",

 "​jasmine​-​core​": "​<​2.4​.​1​",

 "​karma​": "​̂​1.3​.​0​",

 "​karma​-​chrome​-​launcher​": "​̂​2.0​.​0​",

 "​karma​-​cli​": "​̂​1.0​.​1​",

 "​karma​-​jasmine​": "​̂​1.0​.​2​",

 "​karma​-​jasmine​-​html​-​reporter​": "​̂​0.2​.​2​",

 "​protractor​": <4.0.14"​,

 ​"rimraf"​:​ ​"^2.5.4"​,

 ​"@types/node"​:​ ​"^6.0.46"​,

 ​"@types/jasmine"​:​ ​"2.5.36"

 ​},

 ​"repository"​:​ ​{}

}

Some key points to note about the above code −

● There are two types of dependencies, first is the dependencies and then there
are dev dependencies. The dev ones are required during the development
process and the others are needed to run the application.

● The "build:watch": "tsc -p src/ -w" command is used to compile the typescript
in the background by looking for changes in the typescript files.

12. Explain app.module.ts file.

The following code will be present in the ​app.module.ts file.

import​ ​{​ ​NgModule​ ​}​ ​from​ ​'@angular/core'​;

import​ ​{​ ​BrowserModule​ ​}​ ​from​ ​'@angular/platform-browser'​;

import​ ​{​ ​AppComponent​ ​}​ ​from​ ​'./app.component'​;

@NgModule​({

 imports​:​ ​[​ ​BrowserModule​ ​],

 declarations​:​ ​[​ ​AppComponent​ ​],

 bootstrap​:​ ​[​ ​AppComponent​ ​]

})

export​ ​class​ ​AppModule​ ​{​ ​}

Let's go through each line of the code in detail.
● The import statement is used to import functionality from the existing modules.

Thus, the first 3 statements are used to import the​ NgModule,
BrowserModule​ and ​AppComponent​ modules into this module.

● The NgModule decorator is used to later on define the imports, declarations,
and bootstrapping options.

● The BrowserModule is required by default for any web-based angular
application.

● The bootstrap option tells Angular which Component to bootstrap in the
application.

