
SOLID principles

SOLID is an acronym of next items:

S - Single Responsibility Principle

A class should have one, and only one, a reason to change.
One class should only serve one purpose, this does not imply that each class should
have only one method but they should all relate directly to the responsibility of the
class. All the methods and properties should all work towards the same goal. When
a class serves multiple purposes or responsibility then it should be made into a new
class.

O - Open-closed Principle

Software entities (classes, modules, functions, etc.) be extendable without actually
changing the contents of the class you’re extending. If we could follow this principle
strongly enough, it is possible to then modify the behavior of our code without ever
touching a piece of the original code.

L - Liskov Substitution Principle
Functions that use pointers of references to base classes must be able to use
objects of derived classes without knowing it.Subclass/derived class should be
substitutable for their base/parent class.

I - Interface Segregation Principle
A Client should not be forced to implement an interface that it doesn’t use. This rule
means that we should break our interfaces in many smaller ones, so they better
satisfy the exact needs of our clients.

D - Dependency Inversion Principle
High-level modules should not depend on low-level modules. Both should depend on
abstractions. Abstractions should not depend on details. Details should depend on
abstractions. Strictly speaking, depend on Abstractions, not on concretions

Design patterns
EF Core
Validation
JWT token
Async/await
Exceptions
LINQ

Reflection
Identity server

Questions above (from Design patterns to Identity server) cannot be spelled out
shortly since skill level is much higher, it is impossible for developers to answer to
these points in two words. You find all answers easily if you plan to interview
middle/senior developers.

Explain the ASP.NET page life cycle in brief. ASP.NET goes through a series of
stages in the life cycle of each page.

● Page request. The user requests a page. ASP.NET decides whether to
compile it or serve it from a cache.

● Start. The page’s beginning conditions are set.
● Initialization. On-page controls become available, and any themes are

applied.
● Load. ASP.NET uses the view state and control state properties to set the

control properties.
● Postback event handling. When applicable, user input is handled.
● Rendering. ASP.NET saves the view state for the page and writes the output

of rendering to the output stream.
● Unload. The rendered page gets sent to the client. ASP.NET unloads page

properties and performs the cleanup.

What is view state in ASP.NET?
View state is data used to preserve page values and control values of Web Forms
during postbacks.

What’s the difference between Server.Transfer and Response.Redirect.
Server.Transfer sends information from one web request to another, all on the server
side. A response is not sent to the browser to cause the change. On the other hand,
Response.Redirect sends an HTTP 302 message to the browser and causes a
redirect in the browser.

What are the ASP.NET session state modes?

There are several different session state modes in ASP.NET. They provide different
ways to store the session state.

1. InProc mode is the default mode. It stores the session state in the web server
memory.

2. StateServer mode stores session state in a process known as the ASP.NET
state service. If the app is restarted, the session state is preserved.

3. SQLServer mode puts the session state in a SQL database. The session
state is preserved if the web app restarts.

4. Custom mode lets the developer specify a specialized storage provider.
5. Off mode disables the session state.

List some different ASP.NET validators.

● Range Validator
● Required Field Validator
● Compare Validator
● Regular Expression Validator
● Custom Validator
● Summary Validator

Explain the difference between Task and Thread in .NET

● Thread represents an actual OS-level thread, with its own stack and kernel
resources. Thread allows the highest degree of control; you can Abort() or
Suspend() or Resume() a thread, you can observe its state, and you can set
thread-level properties like the stack size, apartment state, or culture.
ThreadPool is a wrapper around a pool of threads maintained by the CLR.

● The Task class from the Task Parallel Library offers the best of both worlds.
Like the ThreadPool, a task does not create its own OS thread. Instead, tasks
are executed by a TaskScheduler; the default scheduler simply runs on the
ThreadPool. Unlike the ThreadPool, Task also allows you to find out when it
finishes, and (via the generic Task) to return a result.

