12 AI Frameworks And Libs: Progressive Tools To Make Your Software Smarter
Updated 04 Sep 2023
8 Min
4658 Views
Have your PC already become smarter than you? If it hasn't, you just need to wait a little bit. According to Gartner's agency forecast, artificial intelligence will surpass human intelligence in several times by 2029. We already use virtual assistants in our phones, chatbots and other tools that augment our life and make it more convenient. So software development services with neural networks integration can be the real way to make your app advantageous.
What tools do developers use to integrate AI into their projects? We will list all popular frameworks and libs in this article to familiarize you
Deep learning frameworks and libs
Deep learning is the class of machine learning and it is a subset of machine learning. It uses neural networks that can imitate decisions making by humans. This type of learning is much deeper and more complicated. So let's take a look at tools for deep learning.
Caffe
Caffe framework is created for commercial use in the first turn. At the same time, it is an open-source, it is written in C++ language, and it allows to write user algorithms in Python. Caffe offers you a wide toolkit for the development and deployment of modern deep learning algorithms. Today Caffe is successfully used for speech and images recognition in different fields including fields like astronomy and robotics. There are available models of learning that are already integrated into the system.
Advantages:
- Clean architecture for instant deployment. Quick switching between central and graphics processing units is performed easily and quickly;
- Open-source code that allows developers not only to control integration but also modify it for their needs;
- High performance makes Caffe a perfect tool for commercial use. Today Caffe is the leader in the top of artificial intelligence framework for deep learning.
AI is also used for the development of chatbots. See more in our video below:
Chatbots in apps
CNTK
CNTK is a Computational Network Toolkit from Microsoft with deep learning algorithms. The toolkit is used in speech recognition services predominantly, such as Windows Cortana, Skype Translator etc. The toolkit can also be used for automated translation and image recognition tasks resolution. It is developed in C++ language.
CNTK allows developers to create distributed neural networks made in the form of the oriented graph.
Advantages:
CNTK supports different models of neural networks - feed-forward, convolutional, recurrent neural networks as well as their combinations. CNTK is using mostly GPU for calculations and provides with linear scalability.
Learn more about AI advantages to use it in business. Read How business can grow using neural network advantages?
DeepLearning4j
An open-source distributed library for deep learning. It is created for Java and Scala programming languages. It was developed for business apps and integrated with Hadoop and Spark. DeepLearning4J is functioning in Java Virtual Machine. It can work with huge data without any problems.
Advantages:
- High performance and processing of large amount of data;
- Implementation of deep learning algorithms from scratch;
- Working with Java.
Caffe, CNTK, DL4j: main pros of deep learning tools
Keras
Keras represents the library that can work with neural networks on a higher level. It simplifies many tasks, it is used in quick experiments and decreases the amount of the same code. Keras is used on convolutional and recurrent neural networks, and on CPU and GPU.
Advantages:
- Easy-to-use;
- Absolutely clear for developers experienced in machine learning;
- Open-source code;
- Easy experimentation implementation.
Swift AI
Deep learning library that is created directly for Swift for it's use on Mac computers. But Swift AI developer promise that Linux version will be available soon as well. Using Swift AI, developers can create neural networks together with deep learning algorithms. It is used predominantly in written speech recognition.
Advantages:
- Signal processing implementation;
- Flexible and staffed toolkit;
- Created for Apple hardware and uses all it's technical features;
- Working with convolutional, recurrent networks, signal processing library.
Theano
It is a library and extension of Python language that allows scientists to calculate efficiently mathematical expressions. The library was named after the wife of ancient Greek mathematician Pythagoras - Theano. The library was developed for boosting a quick machine learning development. Theano contains compiler that converts mathematical expressions written in Python language to C or CUDA code.
Use strong sides of Keras, Swift AI and Theano
Advantages:
- Toolkit for neural networks configuration and their learning;
- Implementation of multi-layer perceptrons, convolutional and recurrent neural networks, autocoders etc.;
- Extremely easy-to-use;
- Can be easily edited using Python.
Future of AI: a promising perspective
All tools listed above make it possible to change your app drastically, integrating artificial intelligence into it. Our developers are always at your disposal to help you implement it. But what's special about AI and machine learning in particular? Why is it gaining it's popularity so fast?
What is the future of artificial intelligence? According to the latest forecasts of scientists, artificial intelligence can beat human's mind by the end of next decade, and it will be able to solve tasks that are well above the capacity of the mankind. However, if AI will be under control, it will serve to the well-being of people.
If we speak about machine learning and deep learning, these technologies already assist us in our daily life. And future promises us that it is only the beginning.
Figure out about the future impact of AI on the world economy. Read Artificial intelligence in business: impact and perspectives.
So, summing up, we would like to note that we are looking forward to getting more orders related to AI integration into your software, so if you plan to implement something like this, you should contact us right now. And subscribe button on the right side will help you to stay always in touch with all the interesting news.
Evgeniy Altynpara is a CTO and member of the Forbes Councils’ community of tech professionals. He is an expert in software development and technological entrepreneurship and has 10+years of experience in digital transformation consulting in Healthcare, FinTech, Supply Chain and Logistics
Give us your impressions about this article
Give us your impressions about this article